Maximum allowable pressure during heavy slurry displacement

Author:

Leksir Abdeslem

Abstract

AbstractHeavy slurry pumping is facing enormous problems concerning pressure generation and casing limitations. Pumping high-density cement throughout narrow column, throttled at their extremity by the float equipment will generate more pressure, and could push casing to their limits of utilization. There are numbers of phenomena that could lead to casing length change as: piston, ballooning, temperature, tension and buckling. This work is oriented to study buckling effect on total casing length change. Generally, in conventional wells cementing, down hole conditions are referred to geological formation fracture pressure limit, which is lower than buckling limit. Heavy slurry displacement could make an exception, where buckling could appears at pressure inferior to geological fracture limit. While pumping heavy cement down, pressure inside casing increases progressively, pushing casing to extend, consequently risk of closing the narrow space out between casing and open hole total depth may appears. At this moment, buckling begins; pressure rise intensely to reach geological fracture limits and causes down hole loses. After passing the critical high pressure situation, casing will come back to their initial form. In order to overcome this situation, maximum allowable pressure during displacement together with problem indicators is proposed, to prevent and early detect the problem. Experimental and simulation results confirm the usability of assumption proposed.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3