A MINLP model for combination pressurization optimization of shale gas gathering system

Author:

Zhou Jun,Zhang Hao,Li Zelong,Liang Guangchuan

Abstract

AbstractThe combination pressurization of the shale gas gathering system is one of the most common pressurization methods in the current engineering site, but it is mostly set by manual experience or simulation analysis, and thus the optimal pressurization scheme cannot be obtained. In order to optimize the pressurization mode of the shale gas gathering and transportation system, a mixed integer nonlinear programming model (MINLP) is established based on the existing pressurization mode of the shale gas field. The model takes the minimum total cost of the compressor unit as the objective function. Various constraints are also taken into account, such as pipe pressure, flowrate, compressor related, well and platform throttling, uniqueness for well and platform pressurization. Solving this optimization model can figure out the appropriate pressurization position, operating power, and compressor unit cost. An actual case for a shale gas block is applied to determine the combined pressurization scheme suitable for this production condition. The results show that the combination of more pressurization methods can meet the pressurization requirements under different production conditions. When both well and platform pressurization are considered, the optimized pressurization position is more concentrated, the number of compressors is reduced by two sets, and the total compressor cost is reduced by 99.28 × 104 Yuan, which reflects the advantages of combined pressurization in the pressurization of shale gas gathering and transportation systems.

Funder

China National Funds for Distinguished Young Scientists

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3