Abstract
Abstract
Purpose
To compare diagnostic power for different severities of age-related macular degeneration (AMD) of two-dimensional macular pigment optical densities (2D-MPOD) and spatially matched objective perimetry, with standard perimetry and best-corrected visual acuity (BCVA).
Methods
The ObjectiveField Analyser (OFA) provided objective perimetry, and a Heidelberg Spectralis optical coherence tomography (OCT) measured 2D-MPOD in AMD patients, both completed twice over 0.99 ± 0.16 years. From each 2D-MPOD image, we extracted 20 regions/macula, matched to the 20 OFA stimuli/macula. For each region, we calculated 7 measures from the 2D-MPOD pixel values and correlated those with OFA sensitivities and delays. We quantified 2D-MPOD changes, the ability of 2D-MPOD and OFA to discriminate AMD stages, and the discriminatory power of Matrix perimetry and BCVA using percentage area under receiver operator characteristic plots (%AUROC).
Results
In 58 eyes of 29 subjects (71.6 ± 6.3 years, 22 females), we found significant correlations between 2D-MPOD and OFA sensitivities for Age-Related Eye Disease Studies (AREDS)-3 and AREDS-4 severities. Delays showed significant correlations with AREDS-2. For AREDS-4, correlations extended across all eccentricities. Regression associated with the Bland–Altman plots showed significant changes in 2D-MPOD over the study period, especially variability measures. MPOD per-region medians discriminated AREDS-1 from AREDS-3 eyes at a %AUROC of 80.0 ± 6.3%, outperforming OFA, Matrix perimetry, and BCVA.
Conclusions
MPOD changes correlated with central functional changes and significant correlations extended peripherally in later-stage AMD. Good diagnostic power for earlier-stage AMD and significant change over the study suggest that 2D-MPOD and OFA may provide effective biomarkers.
Funder
Rebecca L. Cooper Medical Research Foundation
MRFF Biotechnology Bridge grant
Publisher
Springer Science and Business Media LLC