Protective effect of the extremolytes ectoine and hydroxyectoine in a porcine organ culture

Author:

Tsai Teresa,Mueller-Buehl Ana M.,Satgunarajah Yathavan,Kuehn Sandra,Dick H. Burkhard,Joachim Stephanie C.ORCID

Abstract

Abstract Purpose Hypoxic damage to the retina is a relevant component of neurodegenerative pathologies such as glaucoma or retinal ischemia. In porcine retina organ cultures, hypoxic damage can be induced by applying cobalt chloride (CoCl2). The aim of our study was to investigate possible neuroprotective effects of the extremolytes ectoine and hydroxyectoine in this hypoxia-damaged retina model. Methods To simulate hypoxia, porcine retina organ cultures were damaged with 300 μM CoCl2 for 48 h starting on day 1 (n = 8–9/group). In order to investigate the possible neuroprotective effects of ectoine and hydroxyectoine, 0.5 mM of each extremolyte was added to the culture at the same time as the stressor and for the same duration. On day 8, the retina organ cultures were taken for (immuno)-histochemical examinations. Retinal ganglion cells (RGCs), macroglia, and apoptotic and hypoxic cells were detected with appropriate markers followed by cell counts and group comparisons. Results Treatment with ectoine resulted in RGC protection (p < 0.05) and reduced rate of apoptosis (p < 0.001) in hypoxia-treated retina organ cultures. However, the macroglia area and the amount of hypoxic, HIF-1α+ cells were unaffected by the ectoine treatment (p = 0.99). Treatment with hydroxyectoine also protected RGCs (p < 0.01) by inhibiting apoptosis (p < 0.001). In addition, the number of hypoxic, HIF-1α+ cells could be significantly reduced by treatment with hydroxyectoine (p < 0.05). The macroglia area on the other hand was unchanged after CoCl2 and treatment with hydroxyectoine. Conclusion Both extremolytes had a protective effect on CoCl2-induced hypoxia in the porcine retina organ culture. Regarding the reduction of hypoxic stress, hydroxyectoine appears to be more effective. Thus, both extremolytes represent an interesting potential new therapeutic approach for patients with ocular diseases in which hypoxic processes play a significant role.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

Reference73 articles.

1. Cohen LH, Noell WK (1965) Relationships between visual function and metabolism. In: Graymore CN (ed) Biochemistry of the Retina. Academic press Inc, Orlando, pp 36–50

2. Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121(4):547–557. https://doi.org/10.1001/archopht.121.4.547

3. Kaur C, Foulds WS, Ling EA (2008) Hypoxia-ischemia and retinal ganglion cell damage. Clin Ophthalmol 2(4):879–889. https://doi.org/10.2147/opth.s3361

4. Linsenmeier RA, Braun RD, McRipley MA, Padnick LB, Ahmed J, Hatchell DL, McLeod DS, Lutty GA (1998) Retinal hypoxia in long-term diabetic cats. Invest Ophthalmol Vis Sci 39(9):1647–1657

5. Harris A, Arend O, Danis RP, Evans D, Wolf S, Martin BJ (1996) Hyperoxia improves contrast sensitivity in early diabetic retinopathy. Br J Ophthalmol 80(3):209–213. https://doi.org/10.1136/bjo.80.3.209

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3