AI-driven discovery of blood xenobiotic biomarkers in neovascular age-related macular degeneration using iterative random forests

Author:

Künzel Steffen E.,Frentzel Dominik P.,Flesch Leonie T. M.,Knecht Vitus A.,Rübsam Anne,Dreher Felix,Schütte Moritz,Dubrac Alexandre,Lange Bodo,Yaspo Marie-Laure,Lehrach Hans,Joussen Antonia M.,Zeitz Oliver

Abstract

Abstract Purpose To investigate the xenobiotic profiles of patients with neovascular age-related macular degeneration (nAMD) undergoing anti-vascular endothelial growth factor (anti-VEGF) intravitreal therapy (IVT) to identify biomarkers indicative of clinical phenotypes through advanced AI methodologies. Methods In this cross-sectional observational study, we analyzed 156 peripheral blood xenobiotic features in a cohort of 46 nAMD patients stratified by choroidal neovascularization (CNV) control under anti-VEGF IVT. We employed Liquid Chromatography—Tandem Mass Spectrometry (LC–MS/MS) for measurement and leveraged an AI-driven iterative Random Forests (iRF) approach for robust pattern recognition and feature selection, aligning molecular profiles with clinical phenotypes. Results AI-augmented iRF models effectively refined the metabolite spectrum by discarding non-predictive elements. Perfluorooctanesulfonate (PFOS) and Ethyl β-glucopyranoside were identified as significant biomarkers through this process, associated with various clinically relevant phenotypes. Unlike single metabolite classes, drug metabolites were distinctly correlated with subretinal fluid presence. Conclusions This study underscores the enhanced capability of AI, particularly iRF, in dissecting complex metabolomic data to elucidate the xenobiotic landscape of nAMD and environmental impact on the disease. The preliminary biomarkers discovered offer promising directions for personalized treatment strategies, although further validation in broader cohorts is essential for clinical application.

Funder

Novartis Pharma

Charité - Universitätsmedizin Berlin

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3