Abstract
Abstract
Purpose
Neovascular age-related macular degeneration (nAMD) is a major global cause of blindness. Whilst anti-vascular endothelial growth factor (anti-VEGF) treatment is effective, response varies considerably between individuals. Thus, patients face substantial uncertainty regarding their future ability to perform daily tasks. In this study, we evaluate the performance of an automated machine learning (AutoML) model which predicts visual acuity (VA) outcomes in patients receiving treatment for nAMD, in comparison to a manually coded model built using the same dataset. Furthermore, we evaluate model performance across ethnic groups and analyse how the models reach their predictions.
Methods
Binary classification models were trained to predict whether patients’ VA would be ‘Above’ or ‘Below’ a score of 70 one year after initiating treatment, measured using the Early Treatment Diabetic Retinopathy Study (ETDRS) chart. The AutoML model was built using the Google Cloud Platform, whilst the bespoke model was trained using an XGBoost framework. Models were compared and analysed using the What-if Tool (WIT), a novel model-agnostic interpretability tool.
Results
Our study included 1631 eyes from patients attending Moorfields Eye Hospital. The AutoML model (area under the curve [AUC], 0.849) achieved a highly similar performance to the XGBoost model (AUC, 0.847). Using the WIT, we found that the models over-predicted negative outcomes in Asian patients and performed worse in those with an ethnic category of Other. Baseline VA, age and ethnicity were the most important determinants of model predictions. Partial dependence plot analysis revealed a sigmoidal relationship between baseline VA and the probability of an outcome of ‘Above’.
Conclusion
We have described and validated an AutoML-WIT pipeline which enables clinicians with minimal coding skills to match the performance of a state-of-the-art algorithm and obtain explainable predictions.
Funder
moorfields eye charity career development award
uk research & innovation future leaders fellowship
moorfields eye hospital nhs foundation trust
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献