Pathologic myopia and severe pathologic myopia: correlation with axial length

Author:

Flores-Moreno IgnacioORCID,Puertas Mariluz,Almazán-Alonso Elena,Ruiz-Medrano Jorge,García-Zamora María,Vega-González Rocío,Ruiz-Moreno José M.

Abstract

Abstract Purpose This study had three aims: (1) correlate axial length (AL), age and best-corrected visual acuity in high myopic patients scored on the ATN grading system; (2) determine AL cut-off values to distinguish between pathologic myopia (PM) and severe PM; and (3) identify clinical differences between PM and severe PM. Methods This is a cross-sectional, non-interventional study. All patients underwent complete ophthalmologic examination, ATN grading and multimodal imaging (colour fundus photography, swept-source OCT, fundus autofluorescence, OCT angiography and fluorescein angiography). Results Six hundred forty-four eyes from 345 high myopic patients were included. The eyes were graded on the ATN system and classified as PM (≥ A2) or severe PM (≥ A3, ≥ T3 and/or N2). Significant between-group (PM vs. severe PM) differences (p < 0.05) were observed on the individual ATN components (atrophic [A], tractional [T] and neovascular [N]), age, BCVA and AL. AL was also linearly correlated with the A, T and N components (r = 0.53, p < 0.01; r = 0.24, p < 0.01; r = 0.20, p < 0.01; respectively). ROC curve analysis showed the optimal AL cut-off value to distinguish between PM at 28 mm (AUC ROC curve: 0.813, specificity: 75%, sensitivity: 75%) and severe PM at 29.50 mm (AUC ROC curve: 0.760, specificity: 75%, sensitivity: 70%). Conclusion AL is the main variable associated with myopic maculopathy. Due to the clinical differences found between PM and severe PM, there is need to create an objective cut-off point to distinguish these two different entities being the optimal cut-off points for AL 28 mm and 29.5 mm, respectively. These objective AL cut-off values should be taken into account for determining a correct follow-up, ophthalmic management and treatment.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3