Cell composition at the vitreomacular interface in traumatic macular holes

Author:

Guenther Stefanie R.ORCID,Schumann Ricarda G.,Zaytseva Yulia,Hagenau Felix,Wolf Armin,Priglinger Siegfried G.,Vogt Denise

Abstract

Abstract Purpose To describe characteristics of the vitreomacular interface (VMI) in traumatic macular holes (TMH) compared to idiopathic macular holes (IMH) using immunofluorescence and electron microscopy, and to correlate with clinical data. Methods For immunocytochemical and ultrastructural analyses, premacular tissue with internal limiting membrane (ILM) and epiretinal membrane (ERM) was harvested during vitrectomy from 5 eyes with TMH and 5 eyes with IMH. All specimens were processed as flat mounts for phase-contrast microscopy, interference and fluorescence microscopy, and transmission electron microscopy (TEM). Primary antibodies were used against microglial and macroglial cells. Clinical data was retrospectively evaluated. Results Surgically excised premacular tissue of eyes with TMH showed a less pronounced positive immunoreactivity for anti-glutamine synthetase, anti-vimentin and anti-IBA1 compared to eyes with IMH. Cell nuclei staining of the flat-mounted specimens as well as TEM presented a lower cell count in eyes with TMH compared to IMH. All detected cells were found on the vitreal side of the ILM. No collagen fibrils were seen in specimens of TMH. According to patients’ age, intraoperative data as well as spectral-domain optical coherence tomography (SD-OCT) analysis revealed an attached posterior vitreous in the majority of TMH cases (60%), whereas all eyes with IMH presented posterior vitreous detachment. Conclusion The vitreomacular interface in TMH and IMH shows significant differences. In TMH, glial cells are a rare finding on the vitreal side of the ILM.

Funder

Ludwig-Maximilians-Universität München

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Sensory Systems,Ophthalmology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyalocytes in proliferative vitreo-retinal diseases;Expert Review of Ophthalmology;2022-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3