1. S. D. HAITUN. Stationary scientometric distributions. Part I. The different approximations,Scientometrics, 4 (1982) 5; Part II. Non-Gaussian nature of scientific activities,Ibid., Scientometrics, 4 (1982) 89; Part III. The role of the Zipf distribution,Ibid. Scientometrics, 4 (1982) 181.
2. For example, thermodynamic interpretation of the parameters of collections of scientific publications, the use of a branching process for the modelling of scientific activity, etc. see A. I. YABLONSKY, Stokhasticheskie modeli nauchnoi deyatel'nosti (Stochastic models of scientific activities), in:Sistemnye issledovaniya, Yezhegodnik — 1975 (System Research, Yearbook 1975), Nauka, Moskva, 1976, pp. 5–42; V. M. PETROV, A. I. YABLONSKY,Matematika i sotsialnye protsessy: Giperbolicheskie raspredeleniya i ikh primenenie (Mathematics and Social Processes: Hyperbolic Distributions and their Application), Znanie, Moskva, 1980, p. 64.
3. The problem concerning relations between the rank and frequency forms of empirical distributions was touched repeatedly from different points of view while analysing scientometric data. See: A. I. YABLONSKY, On fundamental regularities of the distribution of scientific productivity,Scientometrics, 2 (1980) 3; S. D. HAITUN, The “rank distortion” effect and non-Gaussian nature of scientific activities,Scientometrics, 5 (1983) 375; B. HILL, Rank frequency forms of Zipf's law,Journal of the American Statistical Association, 69 (1974) 1017; B. C. BROOKES, J. M. GRIFFITHS, Frequency-rank distribution,Journal of the American Society for Information Science, 29 (1978) 5; B. C. BROOKES, Towards informetrics: Haitun, Laplace, Zipf, Bradford and the Alvey programme,Journal of Documentation, 40 (1984) 120; J. J. HUBERT, A rank-frequency model for scientific productivity,Scientometrics, 3 (1981) 191; M. V. ARAPOV, E. N. EFIMOVA, Y. A. SHREIDER, O smysle rangovykh raspredelenij (About the sense of rank distributions),Nauchno-Tekhnicheskaya Informatsiya Ser. 2, 1975 (1) (1975) 9; see also notes 1, 2.
4. S. D. HAITUN,Naukometriya: sostoyanie i perspektivy (Scientometrics: State and Prospects), Nauka, Moskva, 1983, p. 165.
5. See: A. I. YABLONSKY,, 3; A. I. YABLONSKY, Stable non-Gaussian distributions in scientometrics,Scientometrics, 7 (1985) 459; S. D. HAITUN, op. cit., notes 1, 3, 4,; S. D. Haitun. Stationary scientometric distributions. Part I. The different approximations,Scientometrics, 4 (1982) 5. A. I. YABLONSKY, On fundamental regularities of the distribution of scientific productivity,Scientometrics, 2 (1980) 3; S. D. HAITUN,Naukometriya: sostoyanie i perspektivy (Scientometrics: State and Prospects), Nauka, Moskva, 1983, p. 165. B. C. BROOKES, op. cit., note 3. S. D. Haitun. Stationary scientometric distributions. Part I. The different approximations, scientific productivity,Scientometrics, 2 (1980) 3;