Modern Learning from Big Data in Critical Care: Primum Non Nocere

Author:

Gravesteijn Benjamin Y.ORCID,Steyerberg Ewout W.,Lingsma Hester F.

Abstract

AbstractLarge and complex data sets are increasingly available for research in critical care. To analyze these data, researchers use techniques commonly referred to as statistical learning or machine learning (ML). The latter is known for large successes in the field of diagnostics, for example, by identification of radiological anomalies. In other research areas, such as clustering and prediction studies, there is more discussion regarding the benefit and efficiency of ML techniques compared with statistical learning. In this viewpoint, we aim to explain commonly used statistical learning and ML techniques and provide guidance for responsible use in the case of clustering and prediction questions in critical care. Clustering studies have been increasingly popular in critical care research, aiming to inform how patients can be characterized, classified, or treated differently. An important challenge for clustering studies is to ensure and assess generalizability. This limits the application of findings in these studies toward individual patients. In the case of predictive questions, there is much discussion as to what algorithm should be used to most accurately predict outcome. Aspects that determine usefulness of ML, compared with statistical techniques, include the volume of the data, the dimensionality of the preferred model, and the extent of missing data. There are areas in which modern ML methods may be preferred. However, efforts should be made to implement statistical frameworks (e.g., for dealing with missing data or measurement error, both omnipresent in clinical data) in ML methods. To conclude, there are important opportunities but also pitfalls to consider when performing clustering or predictive studies with ML techniques. We advocate careful valuation of new data-driven findings. More interaction is needed between the engineer mindset of experts in ML methods, the insight in bias of epidemiologists, and the probabilistic thinking of statisticians to extract as much information and knowledge from data as possible, while avoiding harm.

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine,Neurology (clinical)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Models That Link Physiology with Outcomes;American Journal of Respiratory and Critical Care Medicine;2023-07-01

2. Crossing the AI Chasm in Neurocritical Care;Computers;2023-04-19

3. Machine Learning for Acute Kidney Injury Prediction in the Intensive Care Unit;Advances in Chronic Kidney Disease;2022-09

4. Identifying novel subgroups in heart failure patients with unsupervised machine learning: A scoping review;Frontiers in Cardiovascular Medicine;2022-07-22

5. Navigating the Ocean of Big Data in Neurocritical Care;Neurocritical Care;2022-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3