Transient Hypoperfusion to Ischemic/Anoxic Spreading Depolarization is Related to Autoregulatory Failure in the Rat Cerebral Cortex

Author:

Menyhárt Ákos,Varga Dániel Péter,M. Tóth Orsolya,Makra Péter,Bari Ferenc,Farkas EszterORCID

Abstract

Abstract Background In ischemic stroke, cerebral autoregulation and neurovascular coupling may become impaired. The cerebral blood flow (CBF) response to spreading depolarization (SD) is governed by neurovascular coupling. SDs recur in the ischemic penumbra and reduce neuronal viability by the insufficiency of the CBF response. Autoregulatory failure and SD may coexist in acute brain injury. Here, we set out to explore the interplay between the impairment of cerebrovascular autoregulation, SD occurrence, and the evolution of the SD-coupled CBF response. Methods Incomplete global forebrain ischemia was created by bilateral common carotid artery occlusion in isoflurane-anesthetized rats, which induced ischemic SD (iSD). A subsequent SD was initiated 20–40 min later by transient anoxia SD (aSD), achieved by the withdrawal of oxygen from the anesthetic gas mixture for 4–5 min. SD occurrence was confirmed by the recording of direct current potential together with extracellular K+ concentration by intracortical microelectrodes. Changes in local CBF were acquired with laser Doppler flowmetry. Mean arterial blood pressure (MABP) was continuously measured via a catheter inserted into the left femoral artery. CBF and MABP were used to calculate an index of cerebrovascular autoregulation (rCBFx). In a representative imaging experiment, variation in transmembrane potential was visualized with a voltage-sensitive dye in the exposed parietal cortex, and CBF maps were generated with laser speckle contrast analysis. Results Ischemia induction and anoxia onset gave rise to iSD and aSD, respectively, albeit aSD occurred at a longer latency, and was superimposed on a gradual elevation of K+ concentration. iSD and aSD were accompanied by a transient drop of CBF (down to 11.9 ± 2.9 and 7.4 ± 3.6%, iSD and aSD), but distinctive features set the hypoperfusion transients apart. During iSD, rCBFx indicated intact autoregulation (rCBFx < 0.3). In contrast, aSD was superimposed on autoregulatory failure (rCBFx > 0.3) because CBF followed the decreasing MABP. CBF dropped 15–20 s after iSD, but the onset of hypoperfusion preceded aSD by almost 3 min. Taken together, the CBF response to iSD displayed typical features of spreading ischemia, whereas the transient CBF reduction with aSD appeared to be a passive decrease of CBF following the anoxia-related hypotension, leading to aSD. Conclusions We propose that the dysfunction of cerebrovascular autoregulation that occurs simultaneously with hypotension transients poses a substantial risk of SD occurrence and is not a consequence of SD. Under such circumstances, the evolving SD is not accompanied by any recognizable CBF response, which indicates a severely damaged neurovascular coupling.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Nemzeti Kutatási és Technológiai Hivatal

Gazdasági és Közlekedési Minisztérium

Emberi Eroforrások Minisztériuma

University of Szeged Open Access Fund

University of Szeged

Publisher

Springer Science and Business Media LLC

Subject

Critical Care and Intensive Care Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3