The Role of Vascular Injury and Congestion in the Pathogenesis of Cirrhosis: the Congestive Escalator and the Parenchymal Extinction Sequence

Author:

Wanless Ian R.

Abstract

AbstractPurpose of ReviewCurrent research into the pathogenesis of cirrhosis is largely dominated by investigations of hepatocellular injury and fibrogenesis, mostly in short-term experimental models. Cirrhosis in the human evolves for decades with histologic features that are very different from the models studied, dominated by hepatic vein obstruction and congestion. This is a clue that the mechanisms operating in the human are different from those in most animal models.Recent FindingsThis paper presents an updated “vascular hypothesis” with previously unpublished observations that provide a more complete understanding of the pathogenesis of chronic liver disease in the human: (1) a definition of parenchymal extinction emphasizing the importance of sinusoidal destruction, (2) analysis of the temporal evolution of parenchymal extinction lesions, (3) new data to quantify hepatic vein obstruction, (4) a “congestive escalator” hypothesis to explain how vascular obstruction occurs, beginning with sinusoidal endothelial cell injury, fluid translocation, and vascular compression by mechanics known as “compartment syndrome,” (5) a “nested cone model” of hepatic vein anatomy that predisposes to compartment syndrome in the human, and (6) a proposal for the mechanism of collagen formation in response to congestion (“congestive fibrosis”).SummaryThe guiding principle in this model is that flow has to be vented to keep pressure gradients within the physiological range. Vascular obstruction causes tissue congestion which induces further vascular obstruction that drives a congestive escalator leading to progressive parenchymal extinction. This model may be applicable to all types of cirrhosis found in the human.

Publisher

Springer Science and Business Media LLC

Subject

Virology,Hepatology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3