1. Alcalá-Fdez J, Fernández A, Luengo J, Derrac J, García S, Sánchez L, Herrera F (2011) Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J Multip Valued Logic Soft Comput: 17
2. Anand P, Rastogi R, Chandra S (2020) A new asymmetric ϵ-insensitive pinball loss function based support vector quantile regression model. Appl Soft Comput:106473
3. Awad M, Khanna R (2015) Support vector regression. In: Efficient learning machines. Apress, Berkeley, pp. 67–80
4. Bache K, Lichman M (2013) UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences (2013). URL: http://archive.ics.uci.edu/ml, 0162–8828.
5. Balasundaram S, Gupta D (2014) Lagrangian support vector regression via unconstrained convex minimization. Neural Netw 51:67–79