Analysis of two thermoelastic problems with the Green–Lindsay model

Author:

Bazarra NoeliaORCID,Fernández José R.ORCID,Quintanilla RamónORCID

Abstract

AbstractIn this paper, we analyze, from the numerical point of view, two thermo-elastic problems involving the Green–Lindsay theory. The coupling term is different for each case, involving second order or first order spatial derivatives, respectively. The variational formulation leads to a linear coupled system which is written in terms of the velocity and temperature speed. An existence and uniqueness results and the exponential energy decay for the problem with the stronger coupling are recalled. The polynomial energy decay for the weaker coupling is then proved but using the theory of linear semigroups. Then, a fully discrete approximation is introduced using the finite element method and an implicit scheme. A discrete stability property and a main a priori error estimates result are shown, from which we can derive the linear convergence of the approximations. Finally, some numerical simulations are presented to demonstrate the accuracy of the algorithm, the discrete energy decay and the dependence on the relaxation parameter.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3