A domain decomposition method for the Navier–Stokes equations with stochastic input

Author:

Lu Junxiang,Su Jin

Abstract

AbstractThe paper is committed to studying the domain decomposition method for the incompressible Navier–Stokes equations(NSEs) with stochastic input. The stochastic input is represented spectrally by employing orthogonal polynomial functionals from the Askey scheme as trial basis to represent the random space, and the stochastic NSEs system are transformed into deterministic ones via the polynomial chaos expansion. The corresponding deterministic equations are transformed into the constrained optimization problem by minimizing the cost function on the common interface after the whole domain decomposed into two sub-domains. The constrained optimization problems are transformed into unconstrained problems by the Lagrange multiplier rule. A gradient method-based approach to the solutions of domain decomposition problem is proposed to solve the unconstrained optimality system. Finally, one numerical simulation experiment for square cavity flow problem with the stochastic boundary conditions are performed to demonstrate the feasibility and applicability of the gradient method.

Funder

the National Natural Science Foundations

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

Reference24 articles.

1. Askey R, Wilson J (1985) Some basic hypergeometric polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc., AMS, Providence, p 319

2. Bensoussan A, Temam R (1973) Equations stochastiques du type Navier–Stokes. J Funct Anal 13:195–222

3. Bresch D, Koko J (2006) Operator-splitting and lagrange multiplier domain decomposition methods for numerical simulation of two coupled Navier-Stokes fluids. Int J Appl Math Comput Sci 16:419–29

4. Cameron RH, Martin WT (1947) The orthogonal development of nonlinear functionals in series of Fourier–Hermite functionals. Ann Math 48:385

5. Chan T, Meurant G, Periaux J, Widlund O (1989) Domain decomposition methods. SIAM, Philadelphia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3