High-order spectral collocation method using tempered fractional Sturm–Liouville eigenproblems

Author:

Dahy Sayed A.ORCID,El-Hawary H. M.,Fahim Alaa,Aboelenen Tarek

Abstract

AbstractThis paper presents an accurate exponential tempered fractional spectral collocation method (TFSCM) to solve one-dimensional and time-dependent tempered fractional partial differential equations (TFPDEs). We use a family of tempered fractional Sturm–Liouville eigenproblems (TFSLP) as a basis and the fractional Lagrange interpolants (FLIs) that generally satisfy the Kronecker delta (KD) function at the employed collocation points. Firstly, we drive the corresponding tempered fractional differentiation matrices (TFDMs). Then, we treat with various linear and nonlinear TFPDEs, among them, the space-tempered fractional advection and diffusion problem, the time-space tempered fractional advection–diffusion problem (TFADP), the multi-term time-space tempered fractional problems, and the time-space tempered fractional Burgers’ equation (TFBE) to investigate the numerical capability of the fractional collocation method. The study includes a numerical examination of the produced condition number $$\kappa (A)$$ κ ( A ) of the linear systems. The accuracy and efficiency of the proposed method are studied from the standpoint of the $$L^\infty $$ L -norm error and exponential rate of spectral convergence.

Funder

Assiut University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3