Abstract
AbstractProbabilistic linguistic term sets (PLTSs) play an important role in multi-criteria decision-making(MCDM) problems because it can not only describe objects with several possible linguistic terms, but also represent the proportion of each linguistic term, which can effectively avoid the distortion of decision information to a greater extent and ensure the credibility of decision results. First, to compare PLTS more simply and reasonably, we define a new score function that takes into account partial deviations. Then considering the superiority of the classic combinative distance-based assessment (CODAS) method in the complete representation of information, it is extended to the probabilistic linguistic environment. Subsequently, we improved the classic CODAS method and proposed the PL-CODAS method. Finally, we apply the PL-CODAS method to a cases of venture investors choosing emerging companies, and we compare the proposed method with PL-TOPSIS method, PL-TODIM method and PL-MABAC method to verify its applicability and effectiveness.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献