Abstract
AbstractThis paper considers an iterative approximation of a common solution of a finite family of variational inequailties in a real reflexive Banach space. By employing the Bregman distance and projection methods, we propose an iterative algorithm which uses a newly constructed adaptive step size to avoid a dependence on the Lipschitz constants of the families of the cost operators. The algorithm is carefully constructed so that the need to find a farthest element in any of its iterate is avoided. A strong convergence theorem was proved using the proposed method. We report some numerical experiments to illustrate the performance of the algorithm and also compare with existing methods in the literature.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献