Abstract
AbstractWe extend the study of the random Hermite second-order ordinary differential equation to the fractional setting. We first construct a random generalized power series that solves the equation in the mean square sense under mild hypotheses on the random inputs (coefficients and initial conditions). From this representation of the solution, which is a parametric stochastic process, reliable approximations of the mean and the variance are explicitly given. Then, we take advantage of the random variable transformation technique to go further and construct convergent approximations of the first probability density function of the solution. Finally, several numerically simulations are carried out to illustrate the broad applicability of our theoretical findings.
Funder
Ministerio de Ciencia, Innovación y Universidades
Agencia Estatal de Investigación
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics