Abstract
AbstractThe purpose of this article is to further develop the theory of octonion Fourier transformations (OFT), but from a different perspective than before. It follows the earlier work by Błaszczyk and Snopek, where they proved a few essential properties of the OFT of real-valued functions of three continuous variables. The research described in this article applies to discrete transformations, i.e. discrete-space octonion Fourier transform (DSOFT) and discrete octonion Fourier transform (DOFT). The described results combine the theory of Fourier transform with the analysis of solutions for difference equations, using for this purpose previous research on algebra of quadruple-complex numbers. This hypercomplex generalization of the discrete Fourier transformation provides an excellent tool for the analysis of 3-D discrete linear time-invariant (LTI) systems and 3-D discrete data.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献