Abstract
AbstractLet $$\dot{G}=(G,\sigma )$$
G
˙
=
(
G
,
σ
)
be a signed graph, and let $$\rho (\dot{G})$$
ρ
(
G
˙
)
(resp. $$\lambda _1(\dot{G})$$
λ
1
(
G
˙
)
) denote the spectral radius (resp. the index) of the adjacency matrix $$A_{\dot{G}}$$
A
G
˙
. In this paper we detect the signed graphs achieving the minimum spectral radius $$m(\mathcal S \mathcal R_n)$$
m
(
S
R
n
)
, the maximum spectral radius $$M(\mathcal S \mathcal R_n)$$
M
(
S
R
n
)
, the minimum index $$m(\mathcal I_n)$$
m
(
I
n
)
and the maximum index $$M(\mathcal I_n)$$
M
(
I
n
)
in the set $$\mathcal U_n$$
U
n
of all unbalanced connected signed graphs with $$n\geqslant 3$$
n
⩾
3
vertices. From the explicit computation of the four extremal values it turns out that the difference $$m(\mathcal S \mathcal R_n)-m(\mathcal I_n)$$
m
(
S
R
n
)
-
m
(
I
n
)
for $$n \geqslant 8$$
n
⩾
8
strictly increases with n and tends to 1, whereas $$M(\mathcal S \mathcal R_n)- M(\mathcal I_n)$$
M
(
S
R
n
)
-
M
(
I
n
)
strictly decreases and tends to 0.
Funder
Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献