Integrated facility location and capacity planning under uncertainty

Author:

Correia Isabel,Melo TeresaORCID

Abstract

AbstractWe address a multi-period facility location problem with two customer segments having distinct service requirements. While customers in one segment receive preferred service, customers in the other segment accept delayed deliveries as long as lateness does not exceed a pre-specified threshold. The objective is to define a schedule for facility deployment and capacity scalability that satisfies all customer demands at minimum cost. Facilities can have their capacities adjusted over the planning horizon through incrementally increasing or reducing the number of modular units they hold. These two features, capacity expansion and capacity contraction, can help substantially improve the flexibility in responding to demand changes. Future customer demands are assumed to be unknown. We propose two different frameworks for planning capacity decisions and present a two-stage stochastic model for each one of them. While in the first model decisions related to capacity scalability are modeled as first-stage decisions, in the second model, capacity adjustments are deferred to the second stage. We develop the extensive forms of the associated stochastic programs for the case of demand uncertainty being captured by a finite set of scenarios. Additional inequalities are proposed to enhance the original formulations. An extensive computational study with randomly generated instances shows that the proposed enhancements are very useful. Specifically, 97.5% of the instances can be solved to optimality in much shorter computing times. Important insights are also provided into the impact of the two different frameworks for planning capacity adjustments on the facility network configuration and its total cost.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3