On the rate of convergence of spectral collocation methods for nonlinear multi-order fractional initial value problems
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Link
http://link.springer.com/content/pdf/10.1007/s40314-019-0922-5.pdf
Reference50 articles.
1. Abdelkawy MA, Lopes MA, Zaky MA (2016) Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction-diffusion equations. Comput Appl Math 38:81
2. Aboelenen T, Bakr SA, El-Hawary HM (2017) Fractional Laguerre spectral methods and their applications to fractional differential equations on unbounded domain. Int J Comput Math 94:570–596
3. Alsuyuti MM, Doha EH, Ezz-Eldien SS, Bayoumi BI, Baleanu D (2019) Modified Galerkin algorithm for solving multitype fractional differential equations. Math Method Appl Sci 42(5):1389–1412 Journal of Computational and Applied Mathematic
4. Atanackovic TM, Budincevic M, Pilipovic S (2005) On a fractional distributed-order oscillator. J Phys A 38:6703–6713
5. Bhrawy AH, Zaky MA (2015) A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J Comput Phys 281:876–895
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Singular asymptotic expansion and Legendre collocation method for two-term weakly singular Volterra integral equation of the second kind;Applied Numerical Mathematics;2024-03
2. A re-scaling spectral collocation method for the nonlinear fractional pantograph delay differential equations with non-smooth solutions;Communications in Nonlinear Science and Numerical Simulation;2023-04
3. Solving Nonlinear Multi-Order Fractional Differential Equations Using Bernstein Polynomials;IEEE Access;2023
4. Convergence and stability of spectral collocation method for hyperbolic partial differential equation with piecewise continuous arguments;Computational and Applied Mathematics;2022-11-09
5. Logarithmic Jacobi collocation method for Caputo–Hadamard fractional differential equations;Applied Numerical Mathematics;2022-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3