Non-hydrostatic layer-averaged approximation of Euler system with enhanced dispersion properties

Author:

Escalante C.ORCID,Fernández-Nieto E. D.,Garres-Díaz J.ORCID,Morales de Luna T.ORCID,Penel Y.

Abstract

AbstractA new family of non-hydrostatic layer-averaged models for the non-stationary Euler equations is presented in this work, with improved dispersion relations. They are a generalisation of the layer-averaged models introduced in Fernández-Nieto et al. (Commun Math Sci 16(05):1169–1202, 2018), named LDNH models, where the vertical profile of the horizontal velocity is layerwise constant. This assumption implies that solutions of LDNH can be seen as a first order Galerkin approximation of Euler system. Nevertheless, it is not a fully (xz) Galerkin discretisation of Euler system, but just in the vertical direction (z). Thus, the resulting model only depends on the horizontal space variable (x), and therefore specific and efficient numerical methods can be applied (see Escalante-Sanchez et al. in J Sci Comput 89(55):1–35, 2021). This work focuses on particular weak solutions where the horizontal velocity is layerwise linear on z and possibly discontinuous across layer interfaces. This approach allows the system to be a second-order approximation in the vertical direction of Euler system. Several closure relations of the layer-averaged system with non-hydrostatic pressure are presented. The resulting models are named LIN-NH$$_k$$ k models, with $$k=0,1,2$$ k = 0 , 1 , 2 . Parameter k indicates the degree of the vertical velocity profile considered in the approximation of the vertical momentum equation. All the introduced models satisfy a dissipative energy balance. Finally, an analysis and a comparison of the dispersive properties of each model are carried out. We show that Models LIN-NH$$_1$$ 1 and LIN-NH$$_2$$ 2 provide a better dispersion relation, group velocity and shoaling than LDNH models.

Funder

Ministerio de Ciencia e Innovación

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3