A uniformly convergent nonstandard finite difference scheme for a system of convection–diffusion equations
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Link
http://link.springer.com/content/pdf/10.1007/s40314-014-0171-6.pdf
Reference30 articles.
1. Bellew S, O’Riordan E (2004) A parameter robust numerical method for a system of two singularly perturbed convection-diffusion equations. Appl Num Math 51:171–186
2. Farrell PA, Hegarty AF, Miller JJH, O’Riordan E, Shishkin GI (2000) Robust computational techniques for boundary layers. CRC Press, Boca Raton
3. Kadalbajoo MK, Patidar KC (2002) A survey of numerical techniques for solving singularly perturbed ordinary differential equations. Appl Math Comput 130:457–510
4. Kadalbajoo MK, Gupta V (2010) A brief survey on numerical methods for solving singularly perturbed problems. Appl Math Comput 217:3641–3716
5. Linß T, Madden N (2004) Accurate solution of a system of coupled singularly perturbed reaction-diffusion equations. Computing 73:121–133
Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Second-order a priori and a posteriori error estimations for integral boundary value problems of nonlinear singularly perturbed parameterized form;Numerical Algorithms;2024-08-21
2. A parameter uniform numerical method on a Bakhvalov type mesh for singularly perturbed degenerate parabolic convection–diffusion problems;Journal of Applied Mathematics and Computing;2024-07-24
3. A priori and a posteriori error analysis for a system of singularly perturbed Volterra integro-differential equations;Computational and Applied Mathematics;2023-08-09
4. Parameter-uniform convergence analysis of a domain decomposition method for singularly perturbed parabolic problems with Robin boundary conditions;Journal of Applied Mathematics and Computing;2022-12-29
5. A higher‐order hybrid spline difference method on adaptive mesh for solving singularly perturbed parabolic reaction–diffusion problems with robin‐boundary conditions;Numerical Methods for Partial Differential Equations;2022-10-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3