Derivative-free separable quadratic modeling and cubic regularization for unconstrained optimization

Author:

Custódio A. L.,Garmanjani R.,Raydan M.ORCID

Abstract

AbstractWe present a derivative-free separable quadratic modeling and cubic regularization technique for solving smooth unconstrained minimization problems. The derivative-free approach is mainly concerned with building a quadratic model that could be generated by numerical interpolation or using a minimum Frobenius norm approach, when the number of points available does not allow to build a complete quadratic model. This model plays a key role to generate an approximated gradient vector and Hessian matrix of the objective function at every iteration. We add a specialized cubic regularization strategy to minimize the quadratic model at each iteration, that makes use of separability. We discuss convergence results, including worst case complexity, of the proposed schemes to first-order stationary points. Some preliminary numerical results are presented to illustrate the robustness of the specialized separable cubic algorithm.

Funder

FCT - Fundacão para a Ciência e a Tecnologia

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Theoretical Computer Science,Management Information Systems,Management Science and Operations Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3