Frank–Wolfe and friends: a journey into projection-free first-order optimization methods

Author:

Bomze Immanuel M.ORCID,Rinaldi Francesco,Zeffiro Damiano

Abstract

AbstractInvented some 65 years ago in a seminal paper by Marguerite Straus-Frank and Philip Wolfe, the Frank–Wolfe method recently enjoys a remarkable revival, fuelled by the need of fast and reliable first-order optimization methods in Data Science and other relevant application areas. This review tries to explain the success of this approach by illustrating versatility and applicability in a wide range of contexts, combined with an account on recent progress in variants, improving on both the speed and efficiency of this surprisingly simple principle of first-order optimization.

Funder

University of Vienna

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Theoretical Computer Science,Management Information Systems,Management Science and Operations Research

Reference96 articles.

1. Ahipaşaoğlu SD, Sun P, Todd MJ (2008) Linear convergence of a modified Frank–Wolfe algorithm for computing minimum-volume enclosing ellipsoids. Optim Methods Soft 23(1):5–19

2. Ahipaşaoğlu SD, Todd MJ (2013) A modified Frank–Wolfe algorithm for computing minimum-area enclosing ellipsoidal cylinders: Theory and algorithms. Comput Geom 46(5):494–519

3. Allen-Zhu Z, Hazan E, Hu W, Li Y (2017) Linear convergence of a Frank–Wolfe type algorithm over trace-norm balls. Adv Neural Inf Process Syst 2017:6192–6201

4. Bach F et al (2013) Learning with submodular functions: A convex optimization perspective. Foundations and Trends$$\textregistered $$. Mach Learn 6(2–3):145–373

5. Bashiri MA, Zhang X (2017) Decomposition-invariant conditional gradient for general polytopes with line search. In: Advances in neural information processing systems, pp 2690–2700

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Projection free methods on product domains;Computational Optimization and Applications;2024-06-04

2. On Some Works of Boris Teodorovich Polyak on the Convergence of Gradient Methods and Their Development;Computational Mathematics and Mathematical Physics;2024-04

3. Catching-Up Algorithm with Approximate Projections for Moreau’s Sweeping Processes;Journal of Optimization Theory and Applications;2024-03-18

4. 21 volumes for the 21st century;4OR;2024-03

5. Frank–Wolfe-type methods for a class of nonconvex inequality-constrained problems;Mathematical Programming;2024-02-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3