A network view on reliability: using machine learning to understand how we assess news websites

Author:

Blanke TobiasORCID,Venturini Tommaso

Abstract

AbstractThis article shows how a machine can employ a network view to reason about complex social relations of news reliability. Such a network view promises a topic-agnostic perspective that can be a useful hint on reliability trends and their heterogeneous assumptions. In our analysis, we depart from the ever-growing numbers of papers trying to find machine learning algorithms to predict the reliability of news and focus instead on using machine reasoning to understand the structure of news networks by comparing it with our human judgements. Understanding and representing news networks is not easy, not only because they can be extremely vast but also because they are shaped by several overlapping network dynamics. We present a machine learning approach to analyse what constitutes reliable news from the view of a network. Our aim is to machine-read a network’s understanding of news reliability. To analyse real-life news sites, we used the Décodex dataset to train machine learning models from the structure of the underlying network. We then employ the models to draw conclusions how the Décodex evaluators came to assess the reliability of news.

Funder

H2020 Future and Emerging Technologies

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using deep learning to analyse the times of the UN Security Council;Digital Scholarship in the Humanities;2024-02-28

2. The Application of Random Forest to the Classification of Fake News;BIO Web of Conferences;2024

3. Percepção de adolescentes quanto à identificação de notícias falsas na internet;Tudo é Ciência: Congresso Brasileiro de Ciências e Saberes Multidisciplinares;2022-10-28

4. Research on Data News Propagation Path Based on the Big Data Algorithm;International Transactions on Electrical Energy Systems;2022-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3