Centre assessment grades in 2020: a natural experiment for investigating bias in teacher judgements

Author:

Magowan LouisORCID

Abstract

AbstractThe COVID-19 pandemic meant that, in 2020, students in England were unable to sit their examinations and instead received predicted grades, or “centre assessment grades” (CAGs), from their teachers to allow them to progress. Using the Grading and Admissions Data for England (GRADE) dataset for students from 2018 to 2020, this study treats the use of CAGs as a natural experiment for causally understanding how teacher judgements of academic ability may be biased according to the demographic and socio-economic characteristics of their students. A variety of machine learning models were trained on the 2018–19 data and then used to generate predictions for what the 2020 students were likely to have received had their examinations taken place as usual. The differences between these predictions and the CAGs that students received were calculated and then averaged across students’ different characteristics, revealing what the treatment effects of the use of CAGs were likely to have been for different types of students. No evidence of absolute negative bias against students of any demographic or socio-economic characteristic was found, with all groups of students having received higher CAGs than the grades they were likely to have received had they sat their examinations. Some evidence for relative bias was found, with consistent, but insubstantial differences being observed in the treatment effects of certain groups. However, when higher-order interactions of student characteristics were considered, these differences became more substantial. Intersectional perspectives which emphasise interactions and sub-group differences should be used more widely within quantitative educational equalities research.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Transportation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3