Author:
del Gobbo Emiliano,Fontanella Lara,Fontanella Sara,Sarra Annalina
Abstract
AbstractOver the last years, the prodigious success of online social media sites has marked a shift in the way people connect and share information. Coincident with this trend is the proliferation of location-aware devices and the consequent emergence of user-generated geospatial data. From a social scientific perspective, these location data are of incredible value as it can be mined to provide researchers with useful information about activities and opinions across time and space. However, the utilization of geo-located data is a challenging task, both in terms of data management and in terms of knowledge production, which requires a holistic approach. In this paper, we implement an integrated knowledge discovery in cyberspace framework for retrieving, processing and interpreting Twitter geolocated data for the discovery and classification of the latent opinion in user-generated debates on the internet. Text mining techniques, supervised machine learning algorithms and a cluster spatial detection technique are the building blocks of our research framework. As real-word example, we focus on Twitter conversations about Brexit, posted on Uk during the 13 months before the Brexit day. The experimental results, based on various analysis of Brexit-related tweets, demonstrate that different spatial patterns can be identified, clearly distinguishing pro- and anti-Brexit enclaves and delineating interesting Brexit geographies.
Funder
Università degli Studi G. D'Annunzio Chieti Pescara
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献