Fast meta-analytic approximations for relational event models: applications to data streams and multilevel data

Author:

Vieira FabioORCID,Leenders Roger,Mulder Joris

Abstract

AbstractLarge relational-event history data stemming from large networks are becoming increasingly available due to recent technological developments (e.g. digital communication, online databases, etc). This opens many new doors to learn about complex interaction behavior between actors in temporal social networks. The relational event model has become the gold standard for relational event history analysis. Currently, however, the main bottleneck to fit relational events models is of computational nature in the form of memory storage limitations and computational complexity. Relational event models are therefore mainly used for relatively small data sets while larger, more interesting datasets, including multilevel data structures and relational event data streams, cannot be analyzed on standard desktop computers. This paper addresses this problem by developing approximation algorithms based on meta-analysis methods that can fit relational event models significantly faster while avoiding the computational issues. In particular, meta-analytic approximations are proposed for analyzing streams of relational event data, multilevel relational event data and potentially combinations thereof. The accuracy and the statistical properties of the methods are assessed using numerical simulations. Furthermore, real-world data are used to illustrate the potential of the methodology to study social interaction behavior in an organizational network and interaction behavior among political actors. The algorithms are implemented in the publicly available R package ’remx’.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

Reference53 articles.

1. Arena, G., Lakdawala, R., Meijerink-Bosman, M., Karimova, D., Shafiee Kamalabad, M., & Generoso Vieira, F. (2022). remstimate: optimization tools for tie-oriented and actor-oriented relational event models [Computer software manual]. https://github.com/TilburgNetworkGroup/remstimate (R package version 1.0).

2. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. arXiv preprintarXiv:1406.5823.

3. Betancourt, M., & Girolami, M. (2015). Hamiltonian monte carlo for hierarchical models. Current Trends in Bayesian methodology with applications, 79(30), 2–4.

4. Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2011). Introduction to meta-analysis. John Wiley & Sons.

5. Boschee, E., Lautenschlager, J., O’Brien, S., Shellman, S., Starz, J., & Ward, M. (2015). ICEWS Coded Event Data [Computer software manual]. Harvard Dataverse: Retrieved from. https://doi.org/10.7910/DVN/28075.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3