Transcriptomics and metabolomics reveal hypothalamic metabolic characteristics and key genes after subarachnoid hemorrhage in rats

Author:

Liu ZongchiORCID,Chai ZhaohuiORCID,Wu FanORCID,Zhang LuyuanORCID,Wang XiaoyiORCID,Xu ZihanORCID,Weng YuxiangORCID,Gong JiangbiaoORCID,Shen JianORCID,Zhan RenyaORCID,Zhu YuORCID

Abstract

AbstractSubarachnoid hemorrhage (SAH) is a serious hemorrhagic event with high mortality and morbidity. Multiple injurious events produced by SAH can lead to a series of pathophysiologic processes in the hypothalamus that can severely impact patients’ life. These pathophysiologic processes usually result in physiologic derangements and dysfunction of the brain and multiple organs. This dysfunction involved multiple dimensions of the genome and metabolome. In our study, we induced the SAH model in rats to obtain hypothalamic tissue and serum. The samples were subsequently analyzed by transcriptomics and metabolomics. Next, the functional enrichment analysis of the differentially expressed genes and metabolites were performed by GO and KEGG pathway analysis. Through transcriptomic analysis of hypothalamus samples, 263 up-regulated differential genes, and 207 down-regulated differential genes were identified in SAH groups compared to Sham groups. In the KEGG pathway analysis, a large number of differential genes were found to be enriched in IL-17 signaling pathway, PI3K-Akt signaling pathway, and bile secretion. Liquid chromatography-mass spectrometry metabolomics technology was conducted on the serum of SAH rats and identified 11 up-regulated and 26 down-regulated metabolites in positive ion model, and 1 up-regulated and 10 down-regulated metabolites in negative ion model. KEGG pathways analysis showed that differentially expressed metabolites were mainly enriched in pathways of bile secretion and primary bile acid biosynthesis. We systematically depicted the neuro- and metabolism-related biomolecular changes occurring in the hypothalamus after SAH by performing transcriptomics and metabolomics studies. These biomolecular changes may provide new insights into hypothalamus-induced metabolic changes and gene expression after SAH.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3