Predicting complicated appendicitis is possible without the use of sectional imaging—presenting the NoCtApp score

Author:

Strohäker Jens,Brüschke Martin,Feng You-Shan,Beltzer Christian,Königsrainer Alfred,Ladurner Ruth

Abstract

Abstract Purpose Appendicitis is among the most common acute conditions treated by general surgery. While uncomplicated appendicitis (UA) can be treated delayed or even non-operatively, complicated appendicitis (CA) is a serious condition with possible long-term morbidity that should be managed with urgent appendectomy. Distinguishing both conditions is usually done with computed tomography. The goal of this study was to develop a model to reliably predict CA with widespread available clinical and laboratory parameters and without the use of sectional imaging. Methods Data from 1132 consecutive patients treated for appendicitis between 2014 and 2021 at a tertiary care hospital were used for analyses. Based on year of treatment, the data was divided into training (n = 696) and validation (n = 436) samples. Using the development sample, candidate predictors for CA—patient age, gender, body mass index (BMI), American Society of Anesthesiologist (ASA) score, duration of symptoms, white blood count (WBC), total bilirubin and C-reactive protein (CRP) on admission and free fluid on ultrasound—were first investigated using univariate logistic regression models and then included in a multivariate model. The final development model was tested on the validation sample. Results In the univariate analysis age, BMI, ASA score, symptom duration, WBC, bilirubin, CRP, and free fluid each were statistically significant predictors of CA (each p < 0.001) while gender was not (p = 0.199). In the multivariate analysis BMI and bilirubin were not predictive and therefore not included in the final development model which was built from 696 patients. The final development model was significant (x2 = 304.075, p < 0.001) with a sensitivity of 61.7% and a specificity of 92.1%. The positive predictive value (PPV) was 80.4% with a negative predictive value (NPV) of 82.0%. The receiver operator characteristic of the final model had an area under the curve of 0.861 (95% confidence interval 0.830–0.891, p < 0.001. We simplified this model to create the NoCtApp score. Patients with a point value of ≤ 2 had a NPV 95.8% for correctly ruling out CA. Conclusions Correctly identifying CA is helpful for optimizing patient treatment when they are diagnosed with appendicitis. Our logistic regression model can aid in correctly distinguishing UA and CA even without utilizing computed tomography.

Funder

Universitätsklinikum Tübingen

Publisher

Springer Science and Business Media LLC

Subject

Gastroenterology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3