A novel log odds of positive lymph nodes–based nomogram for predicting overall survival in patients with colorectal signet ring cell carcinoma: a SEER population-based study

Author:

Yu Wenqian,Xu Boqi,Li Peng

Abstract

Abstract Purpose Considering the poor prognosis and high lymph node (LN) involvement rate of colorectal signet ring cell carcinoma (SRCC), this study aimed to construct a prognostic nomogram to predict overall survival (OS) with satisfactory accuracy and utility, based on LN status indicators with superior predictability. Methods Using the Surveillance, Epidemiology, and End Results (SEER) database, we obtained cases of colorectal SRCC patients and employed univariate and multivariate Cox analyses to determine independent prognostic factors. Kaplan–Meier curves were utilized to visualize survival differences among these factors. Receiver operating characteristic curves were generated to assess predictive performances of models incorporating various LN status indicators. A novel nomogram, containing optimal LN status indicators and other prognostic factors, was developed to predict OS, whose discriminatory ability and accuracy were evaluated using calibration curves and decision curve analysis. Results A total of 1663 SRCC patients were screened from SEER database. Older patients and those with grades III–IV, tumor sizes > 39 mm, T3/T4 stage, N1/N2 stage, M1 stage, and higher log odds of positive lymph nodes (LODDS) values exhibited poorer prognoses. Age, grade, tumor size, TNM stage, and LODDS were independent prognostic factors. The model containing N stage and LODDS outperformed the one relying solely on N stage as LN status indicator, resulting in a validated nomogram for accurately predicting OS in SRCC patients. Conclusion The integration of LODDS, N stage, and other risk factors into a nomogram offered precise OS predictions, enhancing therapeutic decision-making and tailored follow-up management for colorectal SRCC patients.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3