Abstract
Abstract
Purpose
To develop prediction models for short-term mortality risk assessment following colorectal cancer surgery.
Methods
Data was harmonized from four Danish observational health databases into the Observational Medical Outcomes Partnership Common Data Model. With a data-driven approach using the Least Absolute Shrinkage and Selection Operator logistic regression on preoperative data, we developed 30-day, 90-day, and 1-year mortality prediction models. We assessed discriminative performance using the area under the receiver operating characteristic and precision-recall curve and calibration using calibration slope, intercept, and calibration-in-the-large. We additionally assessed model performance in subgroups of curative, palliative, elective, and emergency surgery.
Results
A total of 57,521 patients were included in the study population, 51.1% male and with a median age of 72 years. The model showed good discrimination with an area under the receiver operating characteristic curve of 0.88, 0.878, and 0.861 for 30-day, 90-day, and 1-year mortality, respectively, and a calibration-in-the-large of 1.01, 0.99, and 0.99. The overall incidence of mortality were 4.48% for 30-day mortality, 6.64% for 90-day mortality, and 12.8% for 1-year mortality, respectively. Subgroup analysis showed no improvement of discrimination or calibration when separating the cohort into cohorts of elective surgery, emergency surgery, curative surgery, and palliative surgery.
Conclusion
We were able to train prediction models for the risk of short-term mortality on a data set of four combined national health databases with good discrimination and calibration. We found that one cohort including all operated patients resulted in better performing models than cohorts based on several subgroups.
Funder
Innovative Medicines Initiative 2 Joint Undertaking
Novo Nordisk Fonden
Copenhagen University
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献