Author:
Li Yaoyong,Bontcheva Kalina,Cunningham Hamish
Publisher
Springer Berlin Heidelberg
Reference28 articles.
1. Bender, O., Och, F.J., Ney, H.: Maximum entropy models for named entity recognition. In: Daelemans, W., Osborne, M. (eds.) Proceedings of CoNLL 2003, Edmonton, Canada, pp. 148–151 (2003)
2. Califf, M.E.: Relational learning techniques for natural language information extraction. PhD thesis, University of Texas at Austin (1998)
3. Chieu, H.L., Ng, H.T.: A Maximum Entropy Approach to Information Extraction from Semi-Structured and Free Text. In: Proceedings of the Eighteenth National Conference on Artificial Intelligence, pp. 786–791 (2002)
4. Chieu, H.L., Ng, H.T.: Named entity recognition: A maximum entropy approach using global information. In: Proceedings of the 19th International Conference on Computational Linguistics (COLING 2002), Taipei, Taiwan (2002)
5. Chieu, H.L., Ng, H.T.: Named entity recognition with a maximum entropy approach. In: Daelemans, W., Osborne, M. (eds.) Proceedings of CoNLL 2003, Edmonton, Canada, pp. 160–163 (2003)
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. T5-Based Named Entity Recognition for Social Media: A Case Study for Location Extraction;2024 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT);2024-07-04
2. A large-scale Chinese patent dataset for information extraction;Systems Science & Control Engineering;2024-06-13
3. Medicine Authentication Based on Image Processing Using Convolutional Neural Networks;2024 16th International Conference on Computer and Automation Engineering (ICCAE);2024-03-14
4. Enumerating grammar-based extractions;Discrete Applied Mathematics;2023-12
5. Automatic Knowledge Graph Construction over Efficient Information Extraction Networks;2023 International Conference on Intelligent Education and Intelligent Research (IEIR);2023-11-05