1. Andrews-Larson, C., Wawro, M., & Zandieh, M. (2017). A hypothetical learning trajectory for conceptualizing matrices as linear transformations. International Journal of Mathematical Education in Science and Technology, 48, 1–21.
2. Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.
3. Bouhjar, K., Andrews-Larson, C., Haider, M., & Zandieh, M. (2018). Examining students’ procedural and conceptual understanding of eigenvectors and eigenvalues in the context of inquiry- oriented instruction. In S. Stewart, C. Andrews-Larson, M. Zandieh, & A. Berman (Eds.), Challenges in teaching linear algebra. Berlin: Springer.
4. Braun, B., Bressoud, D., Briars, D., Coe, T., Crowley, J., Dewar, J., Ward, M. (2016). Active learning in post-secondary mathematics education. CBMS News, Retrieved from http://www.cbmsweb.org/2016/07/active-learning-in-post-secondary-mathematics-education/.
5. Carpenter, T. P., Fennema, E., & Franke, M. L. (1996). Cognitively guided instruction: A knowledge base for reform in primary mathematics instruction. The Elementary School Journal, 97(1), 3–20.