Interactions of molten salts with cathode products in the FFC Cambridge Process

Author:

Chen George Z.

Abstract

AbstractMolten salts play multiple important roles in the electrolysis of solid metal compounds, particularly oxides and sulfides, for the extraction of metals or alloys. Some of these roles are positive in assisting the extraction of metals, such as dissolving the oxide or sulfide anions, and transporting them to the anode for discharging, and offering the high temperature to lower the kinetic barrier to break the metal-oxygen or metal-sulfur bond. However, molten salts also have unfavorable effects, including electronic conductivity and significant capability of dissolving oxygen and carbon dioxide gases. In addition, although molten salts are relatively simple in terms of composition, physical properties, and decomposition reactions at inert electrodes, in comparison with aqueous electrolytes, the high temperatures of molten salts may promote unwanted electrode-electrolyte interactions. This article reviews briefly and selectively the research and development of the Fray-Farthing-Chen (FFC) Cambridge Process in the past two decades, focusing on observations, understanding, and solutions of various interactions between molten salts and cathodes at different reduction states, including perovskitization, non-wetting of molten salts on pure metals, carbon contamination of products, formation of oxychlorides and calcium intermetallic compounds, and oxygen transfer from the air to the cathode product mediated by oxide anions in the molten salt.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Geochemistry and Petrology,Mechanical Engineering,Mechanics of Materials

Reference85 articles.

1. D.J. Fray, T.W. Farthing, and Z. Chen, Removal of Oxygen from Metal Oxides and Solid Solutions by Electrolysis in a Fused Salt, International Patent, Appl. WO9964638, 1999.

2. G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), No. 6802, p. 361.

3. H.M. Flower, Materials Science: A moving oxygen story, Nature, 407(2000), No. 6802, p. 305.

4. Science and Technology, Dr. Chen and the philosopher’s stone, The Economist, 21st September 2000. [2020-05-4] https://www.economist.com/science-and-technology/2000/09/21/dr-chen-and-the-philosophers-stone

5. K. Faller and F.H.S. Froes, The use of titanium in family automobiles: Current trends, JOM, 53(2001), No. 4, p. 27.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3