Author:
Zhang Hong-di,Li Xiao-yu,Pang Jing,Yin Li-juan,Ma Hai-jian,Li Ying-jie,Liu Yan,Wang Wei-min
Abstract
Abstract
The corrosion behavior and microstructure of Fe78Si9B13 glassy alloy in NaOH and NaCl solutions under a 0.02-T magnetic field were investigated through electrochemical testing and scanning electron microscopy (SEM). The current-density prepeak (PP) in the anodic polarization curves in low-concentration NaOH solutions (classified as type I) tends to disappear when the NaOH concentration is increased to 0.4 mol/L and the magnetic field is applied. Under the magnetic field, the height of the second current-density peak is increased in low-concentration NaOH solutions (type I) but decreased in high-concentration NaOH solutions (type II). The non-monotonic effect of the magnetic field was similarly observed in the case of polarization curves of samples measured in NaCl solutions. Ring-like corroded patterns and round pits are easily formed under the magnetic field in NaOH and NaCl solutions. These experimental results were discussed in terms of the magnetohydrodynamic (MHD) effect.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Metals and Alloys,Geochemistry and Petrology,Mechanical Engineering,Mechanics of Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献