Author:
Nenchev Bogdan,Tao Qing,Dong Zihui,Panwisawas Chinnapat,Li Haiyang,Tao Biao,Dong Hongbiao
Abstract
AbstractData-driven algorithms for predicting mechanical properties with small datasets are evaluated in a case study on gear steel hardenability. The limitations of current data-driven algorithms and empirical models are identified. Challenges in analysing small datasets are discussed, and solution is proposed to handle small datasets with multiple variables. Gaussian methods in combination with novel predictive algorithms are utilized to overcome the challenges in analysing gear steel hardenability data and to gain insight into alloying elements interaction and structure homogeneity. The gained fundamental knowledge integrated with machine learning is shown to be superior to the empirical equations in predicting hardenability. Metallurgical-property relationships between chemistry, sample size, and hardness are predicted via two optimized machine learning algorithms: neural networks (NNs) and extreme gradient boosting (XGboost). A comparison is drawn between all algorithms, evaluating their performance based on small data sets. The results reveal that XGboost has the highest potential for predicting hardenability using small datasets with class imbalance and large inhomogeneity issues.
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Metals and Alloys,Geochemistry and Petrology,Mechanical Engineering,Mechanics of Materials
Reference21 articles.
1. M. Vctor Li, D.V. Niebuhr, L.L. Meekisho, and D.G. Atteridge, A computational model for the prediction of steel hardenability, Metall. Mater. Trans. B, 29(1998), No. 3, p. 661.
2. V. Javaheri, A. Pohjonen, J.I. Asperheim, D. Ivanov, and D. Porter, Physically based modeling, characterization and design of an induction hardening process for a new slurry pipeline steel, Mater. Des., 182(2019), art. No. 108047.
3. E.C.H.C. O’ Brien and H.K. Yeddu, Multi-length scale modeling of carburization, martensitic microstructure evolution and fatigue properties of steel gears, J. Mater. Sci. Technol., 49(2020), p. 157.
4. P.H. Maynier, J. Dollet, and P. Bastien. Prediction of micro-structure via empirical formulas based on CCT diagrams, [in] The 107th AIME Annual Meeting, Denver, Colorado, 1978, p. 163.
5. D. Khan and B. Gautham, Integrated modeling of carburizing-quenching-tempering of steel gears for an ICME framework, Integr. Mater. Manuf. Innovation, 7(2018), No. 1, p. 28.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献