Effect of weld microstructure on brittle fracture initiation in the thermally-aged boiling water reactor pressure vessel head weld metal

Author:

Hytönen Noora,Que Zai-qing,Arffman Pentti,Lydman Jari,Nevasmaa Pekka,Ehrnstén Ulla,Efsing Pål

Abstract

AbstractEffects of the weld microstructure and inclusions on brittle fracture initiation are investigated in a thermally aged ferritic high-nickel weld of a reactor pressure vessel head from a decommissioned nuclear power plant. As-welded and reheated regions mainly consist of acicular and polygonal ferrite, respectively. Fractographic examination of Charpy V-notch impact toughness specimens reveals large inclusions (0.5–2.5 µm) at the brittle fracture primary initiation sites. High impact energies were measured for the specimens in which brittle fracture was initiated from a small inclusion or an inclusion away from the V-notch. The density, geometry, and chemical composition of the primary initiation inclusions were investigated. A brittle fracture crack initiates as a microcrack either within the multiphase oxide inclusions or from the de-bonded interfaces between the uncracked inclusions and weld metal matrix. Primary fracture sites can be determined in all the specimens tested in the lower part of the transition curve at and below the 41-J reference impact toughness energy but not above the mentioned value because of the changes in the fracture mechanism and resulting changes in the fracture appearance.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Geochemistry and Petrology,Mechanical Engineering,Mechanics of Materials

Reference39 articles.

1. P. Haušild, C. Berdin, and P. Bompard, Prediction of cleavage fracture for a low-alloy steel in the ductile-to-brittle transition temperature range, Mater. Sci. Eng. A, 391(2005), No. 1–2, p. 188.

2. A.H. Cottrell, Theory of brittle facture in steel and similar metals, Trans. Metall. Soc. AIME, 212(1958), p. 192.

3. P. Joly, L. Sun, P. Efsing, J.P. Massoud, F. Somville, R. Gerard, Y.H. An, and J. Bailey, Characterization of in-service thermal ageing effects in base materials and welds of the pressure vessel of a decommissioned PWR pressurizer, after 27 years of operation, [in] 19th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors 2019, Boston, 2019, p. 392.

4. K. Lindgren, M. Boåsen, K. Stiller, P. Efsing, and M. Thuvander, Evolution of precipitation in reactor pressure vessel steel welds under neutron irradiation, J. Nucl. Mater., 488(2017), p. 222.

5. Y.A. Nikolaev, A.V. Nikolaeva, A.M. Kryukov, V.I. Levit, and Y.N. Korolyov, Radiation embrittlement and thermal annealing behavior of Cr−Ni−Mo reactor pressure vessel materials, Nucl. Mater., 226(1995), No. 1–2, p. 144.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3