Hydrogen effect on the mechanical behaviour and microstructural features of a Fe-Mn-C twinning induced plasticity steel

Author:

Guo Xiaofei,Zaefferer Stefan,Archie Fady,Bleck Wolfgang

Abstract

AbstractThe influences of hydrogen on the mechanical properties and the fracture behaviour of Fe-22Mn-0.6C twinning induced plasticity steel have been investigated by slow strain rate tests and fractographic analysis. The steel showed high susceptibility to hydrogen embrittlement, which led to 62.9% and 74.2% reduction in engineering strain with 3.1 and 14.4 ppm diffusive hydrogen, respectively. The fracture surfaces revealed a transition from ductile to brittle dominated fracture modes with the rising hydrogen contents. The underlying deformation and fracture mechanisms were further exploited by examining the hydrogen effects on the dislocation substructure, stacking fault probability, and twinning behaviour in pre-strained slow strain rate test specimens and notched tensile specimens using coupled electron channelling contrast imaging and electron backscatter diffraction techniques. The results reveal that the addition of hydrogen promotes planar dislocation structures, earlier nucleation of stacking faults, and deformation twinning within those grains which have tensile axis orientations close to <111>//rolling direction and <112gt;//rolling direction. The developed twin lamellae result in strain localization and micro-voids at grain boundaries and eventually lead to grain boundary decohesion.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Geochemistry and Petrology,Mechanical Engineering,Mechanics of Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3