Abstract
AbstractIschemic stroke is a clinical syndrome caused by the disruption of blood flow into cerebral tissues and is associated with high disability and mortality rates. Studies have established the pathological role of platelets in cerebral ischemia/reperfusion (I/R) injury, although the underlying mechanism of action remains largely unclear. In this study, we created an I/R mouse model via middle cerebral artery occlusion and reperfusion (MCAO/R) and analyzed the transcriptomic profiles of the ipsilateral and contralateral cortices using RNA-seq. We found that cerebral I/R injury induced platelet invasion and accumulation in the cerebral cortex by stimulating TNF-α secretion from activated astrocytes in the ischemic region, while TNF-α expression enhanced platelet reactivity through the RIP1/RIP3/AKT pathway. Furthermore, the inoculation of TNF-α-stimulated platelets aggravated I/R injury in mice, whereas the administration of anti-TNF-α antibodies at the onset of reperfusion alleviated ischemic damage. The RNA-seq results further showed that AP-1 transcriptionally activated TNF-α in the I/R-injured cortex by directly binding to the promoter region. These findings provide novel insights into the pathological role of platelets activated by reactive astrocyte-derived TNF-α in cerebral I/R injury.
Funder
Research project of Gusu School of Nanjing Medical University
Suzhou New District Science and Technology Project
Jiangsu Key Talent Youth Awards in Medicine
Gusu Health Youth Talent Awards
National Natural Science Foundation of China
Core Medical Science Subjects in Suzhou
Publisher
Springer Science and Business Media LLC
Subject
Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献