Description of Novel Molecular Factors in Lumbar DRGs and Spinal Cord Factors Underlying Development of Neuropathic Pain Component in the Animal Model of Osteoarthritis

Author:

Malek NataliaORCID,Mlost Jakub,Kostrzewa Magdalena,Rajca Jolanta,Starowicz Katarzyna

Abstract

AbstractOsteoarthritis (OA) is one of the most common joint disorder, with pain accompanied by functional impairment, as the most pronounced clinical symptom. Currently used pharmacotherapy involves symptomatic treatment that do not always provide adequate pain relief. This may be due to concomitance of central sensitization and development of neuropathic features in OA patients. Here we performed studies in the animal model of OA to investigate of the neuropathic component. Intraarticular injection of monoiodoacetate (MIA, 1 mg) was used to induce OA in Wistar male rats. Development of pain phenotype was assessed by behavioral testing (PAM test and von Frey’s test), while corresponding changes in dorsal root ganglia (DRGs L3–L5) and spinal cord (SC) gene expression were assessed by means of qRT-PCR technique. We also performed microtomography of OA-affected knee joints to correlate the level of bone degradation with observed behavioral and molecular changes. We observed gradually developing remote allodynia after MIA treatment, indicating the presence of neuropathic component. Our results showed that, among DRGs innervating knee joint, development of central sensitization is most likely due to peripheral input of stimuli through DRG L5. In SC, development of secondary hypersensitivity correlated with increased expression of TAC1 and NPY. Our studies provided molecular records on abnormal activation of pain transmission markers in DRG and SC during development of OA that are responsible for the manifestation of neuropathic features. The obtained results increase insight into molecular changes occurring in the neuronal tissue during OA development and may contribute to readdressing treatment paradigms.

Funder

Narodowe Centrum Nauki

Ministerstwo Edukacji i Nauki

Publisher

Springer Science and Business Media LLC

Subject

Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3