Palmitic Acid and Oleic Acid Differently Modulate TLR2-Mediated Inflammatory Responses in Microglia and Macrophages

Author:

Howe Anne-Marie,Burke Sinéad,O’Reilly Marcella E.,McGillicuddy Fiona C.,Costello Derek A.ORCID

Abstract

AbstractThe relationship between systemic immunity and neuroinflammation is widely recognised. Infiltration of peripheral immune cells to the CNS during certain chronic inflammatory states contributes significantly to neuropathology. Obesity and its co-morbidities are primary risk factors for neuroinflammatory and neurodegenerative conditions, including Alzheimer’s disease (AD). Dietary fats are among the most proinflammatory components of the obesogenic diet and play a prominent role in the low-grade systemic inflammation associated with the obese state. Saturated fatty acid (SFA) is largely implicated in the negative consequences of obesity, while the health benefits of monounsaturated fatty acid (MUFA) are widely acknowledged. The current study sought to explore whether SFA and MUFA differently modulate inflammatory responses in the brain, compared with peripheral immune cells. Moreover, we assessed the neuroinflammatory impact of high-fat-induced obesity and hypothesised that a MUFA-rich diet might mitigate inflammation despite obesogenic conditions. Toll-like receptor (TLR)2 mediates the inflammation associated with both obesity and AD. Using the TLR2 agonist lipoteichoic acid (LTA), we report that pre-exposure to either palmitic acid (PA) or oleic acid (OA) attenuated cytokine secretion from microglia, but heightened sensitivity to nitric oxide (NO) production. The reduction in cytokine secretion was mirrored in LTA-stimulated macrophages following exposure to PA only, while effects on NO were restricted to OA, highlighting important cell-specific differences. An obesogenic diet over 12 weeks did not induce prominent inflammatory changes in either cortex or hippocampus, irrespective of fat composition. However, we reveal a clear disparity in the effects of MUFA under obesogenic and non-obesogenic conditions.

Funder

Wellcome Trust

UCD School of Biomolecular & Biomedical Science

University College Dublin

Publisher

Springer Science and Business Media LLC

Subject

Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3