SARS-CoV-2 Spike Glycoprotein S1 Induces Neuroinflammation in BV-2 Microglia

Author:

Olajide Olumayokun A.,Iwuanyanwu Victoria U.,Adegbola Oyinkansola D.,Al-Hindawi Alaa A.

Abstract

AbstractIn addition to respiratory complications produced by SARS‐CoV‐2, accumulating evidence suggests that some neurological symptoms are associated with the disease caused by this coronavirus. In this study, we investigated the effects of the SARS‐CoV‐2 spike protein S1 stimulation on neuroinflammation in BV-2 microglia. Analyses of culture supernatants revealed an increase in the production of TNF-α, IL-6, IL-1β and iNOS/NO. S1 also increased protein levels of phospho-p65 and phospho-IκBα, as well as enhanced DNA binding and transcriptional activity of NF-κB. These effects of the protein were blocked in the presence of BAY11-7082 (1 µM). Exposure of S1 to BV-2 microglia also increased the protein levels of NLRP3 inflammasome and enhanced caspase-1 activity. Increased protein levels of p38 MAPK was observed in BV-2 microglia stimulated with the spike protein S1 (100 ng/ml), an action that was reduced in the presence of SKF 86,002 (1 µM). Results of immunofluorescence microscopy showed an increase in TLR4 protein expression in S1-stimulated BV-2 microglia. Furthermore, pharmacological inhibition with TAK 242 (1 µM) and transfection with TLR4 small interfering RNA resulted in significant reduction in TNF-α and IL-6 production in S1-stimulated BV-2 microglia. These results have provided the first evidence demonstrating S1-induced neuroinflammation in BV-2 microglia. We propose that induction of neuroinflammation by this protein in the microglia is mediated through activation of NF-κB and p38 MAPK, possibly as a result of TLR4 activation. These results contribute to our understanding of some of the mechanisms involved in CNS pathologies of SARS-CoV-2.

Publisher

Springer Science and Business Media LLC

Subject

Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3