Morphine-Driven m6A Epitranscriptomic Neuroadaptations in Primary Cortical Cultures

Author:

Dabrowski Konrad R.,Daws Stephanie E.ORCID

Abstract

AbstractOpioid overdose is the leading cause of accidental death in the United States and remains a major public health concern, despite significant resources aimed at combating opioid misuse. Neurobiological research to elucidate molecular and cellular consequences of opioid exposure is required to define avenues to explore for reversal of opioid-induced neuroadaptations. Opioids impart well-documented regulation of the transcriptome and epigenetic modifications in the brain, but opioid-induced epitranscriptomic posttranscriptional regulation of RNA is vastly understudied. N6-methyladenosine (m6A) RNA methylation is significantly enriched in the brain and involved in learning, memory, and reward. m6A modifications have not been studied in opioid use disorder, despite being the most common RNA modification. We detected significant regulation of m6A-modifying enzymes in rat primary cortical cultures following morphine treatment, including AlkB Homolog 5 (Alkbh5). The m6a demethylase ALKBH5 functions as an m6A eraser, removing m6A modifications from mRNA. We hypothesized that chronic opioid treatment regulates m6A modifications through modulation of Alkbh5 and profiled m6A modifications in primary cortical cultures following chronic morphine treatment and Alkbh5 knock-down. We observed differential regulation of m6A modifications for a common set of transcripts following morphine or Alkbh5 knock-down, and the two treatments elicited concordant m6A epitranscriptomic profiles, suggesting that a subset of morphine-driven m6A modifications may be mediated through downregulation of Alkbh5 in cortical cultures. Gene Ontology terms of commonly regulated transcripts included serotonin secretion, synapse disassembly, neuron remodeling, and immune response. Thus, we conclude that morphine can drive epitranscriptomic changes, a subset of which may occur in an Alkbh5-dependent manner.

Funder

National Institute on Drug Abuse

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3