Abstract
AbstractParkinson’s disease remains one of the leading neurodegenerative diseases in developed countries. Despite well-defined symptomology and pathology, the complexity of Parkinson’s disease prevents a full understanding of its etiological mechanism. Mechanistically, α-synuclein misfolding and aggregation appear to be central for disease progression, but mitochondrial dysfunction, dysfunctional protein clearance and ubiquitin/proteasome systems, and neuroinflammation have also been associated with Parkinson’s disease. Particularly, neuroinflammation, which was initially thought to be a side effect of Parkinson’s disease pathogenesis, has now been recognized as driver of Parkinson’s disease exacerbation. Next-generation sequencing has been used to identify a plethora of long noncoding RNAs (lncRNA) with important transcriptional regulatory functions. Moreover, a myriad of lncRNAs are known to be regulators of inflammatory signaling and neurodegenerative diseases, including IL-1β secretion and Parkinson’s disease. Here, LncZFAS1 was identified as a regulator of inflammasome activation, and pyroptosis in human neuroblast SH-SY5Y cells following MPP+ treatment, a common in vitro Parkinson’s disease cell model. Mechanistically, TXNIP ubiquitination through MIB1 E3 ubiquitin ligase regulates NLRP3 inflammasome activation in neuroblasts. In contrast, MPP+ activates the NLPR3 inflammasome through miR590-3p upregulation and direct interference with MIB1-dependent TXNIP ubiquitination. LncZFAS overexpression inhibits this entire pathway through direct interference with miR590-3p, exposing a novel research idea regarding the mechanism of Parkinson’s disease.
Publisher
Springer Science and Business Media LLC
Subject
Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology
Reference80 articles.
1. de Rijk MC, Launer LJ, Berger K, Breteler MM, Dartigues JF, Baldereschi M, Fratiglioni L, Lobo A, Martinez-Lage J, Trenkwalder C, Hofman A (2000) Prevalence of Parkinson’s disease in Europe: a collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology (11 Suppl 5):S21-S23
2. Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K, Marshall FJ, Ravina BM, Schifitto G, Siderowf A, Tanner CM (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology (5):384-386. https://doi.org/10.1212/01.wnl.0000247740.47667.03
3. Zhang XM, Yin M, Zhang MH (2014) Cell-based assays for Parkinson’s disease using differentiated human LUHMES cells. Acta Pharmacol Sin (7):945-956. https://doi.org/10.1038/aps.2014.36
4. Arnot CJ, Gay NJ, Gangloff M (2010) Molecular mechanism that induces activation of Spatzle, the ligand for the Drosophila Toll receptor. J Biol Chem (25):19502-19509. https://doi.org/10.1074/jbc.M109.098186
5. Schmidt F, Champy P, Seon-Meniel B, Franck X, Raisman-Vozari R, Figadere B (2009) Chemicals possessing a neurotrophin-like activity on dopaminergic neurons in primary culture. Plos One (7):e6215. https://doi.org/10.1371/journal.pone.0006215
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献