Maternal Subclinical Hypothyroidism in Rats Impairs Spatial Learning and Memory in Offspring by Disrupting Balance of the TrkA/p75NTR Signal Pathway

Author:

Zhang Fan,Lin Xinyue,Liu Aihua,Chen Jian,Shan Zhongyan,Teng Weiping,Yu XiaohuiORCID

Abstract

AbstractMaternal subclinical hypothyroidism (SCH) during pregnancy can adversely affect the neurodevelopment of the offspring. The balance of nerve growth factor (NGF)-related tropomyosin receptor kinase A/p75 neurotrophin receptor (TrkA/p75NTR) signaling in the hippocampus is important in brain development, and whether it affects cognitive function in maternal SCH’s offspring is not clear. In this study, we found that compared with the control (CON) group, expression of proliferation-related proteins [NGF, p-TrkA, phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2) and phospho-cAMP response element-binding protein (p-CREB)] decreased in the hippocampus of the offspring in the SCH group, overt hypothyroidism (OHT) group, and the group with levothyroxine (L-T4) treatment for SCH from gestational day 17 (E17). In contrast, expression of apoptosis-related proteins [pro-NGF, p75NTR, phospho-C-Jun N-terminal kinase (p-JNK), p53, Bax and cleaved caspase-3] was increased. The two groups with treatment with L-T4 for SCH from E10 and E13, respectively, showed no significant difference compared with the CON group. L-T4 treatment enhanced relative expression of NGF by increasing NGF/proNGF ratio in offspring from maternal SCH rats. In conclusion, L-T4 treatment for SCH from early pregnancy dramatically ameliorated cognitive impairment via TrkA/p75NTR signaling, which involved activation of the neuronal proliferation and inhibition of neuronal apoptosis in SCH rats’ offspring.

Funder

The National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3