TIGAR Protects Cochlear Hair Cells against Teicoplanin-Induced Damage

Author:

Zhang Qiongmin,Yao Zhiqun,Chen Fang,Wang Xue,Wang Man,Lu Junze,Meng Yu,Xu Lei,Han Yuechen,Liu Wenwen,Wang Haibo

Abstract

Abstract Teicoplanin is a glycopeptide antibiotic used to treat severe staphylococcal infections. It has been claimed that teicoplanin possesses ototoxic potential, although its toxic effects on cochlear hair cells (HCs) remain unknown. The TP53-induced glycolysis and apoptosis regulator (TIGAR) plays a crucial role in promoting cell survival. Prior research has demonstrated that TIGAR protects spiral ganglion neurons against cisplatin damage. However, the significance of TIGAR in damage to mammalian HCs has not yet been investigated. In this study, firstly, we discovered that teicoplanin caused dose-dependent cell death in vitro in both HEI-OC1 cells and cochlear HCs. Next, we discovered that HCs and HEI-OC1 cells treated with teicoplanin exhibited a dramatically decrease in TIGAR expression. To investigate the involvement of TIGAR in inner ear injury caused by teicoplanin, the expression of TIGAR was either upregulated via recombinant adenovirus or downregulated by shRNA in HEI-OC1 cells. Overexpression of TIGAR increased cell viability, decreased apoptosis, and decreased intracellular reactive oxygen species (ROS) level, whereas downregulation of TIGAR decreased cell viability, exacerbated apoptosis, and elevated ROS level following teicoplanin injury. Finally, antioxidant therapy with N-acetyl-L-cysteine decreased ROS level, prevented cell death, and restored p38/phosphorylation-p38 expression levels in HEI-OC1 cells injured by teicoplanin. This study demonstrates that TIGAR may be a promising novel target for the prevention of teicoplanin-induced ototoxicity.

Funder

National Natural Science Foundation of China

Taishan Scholar Project of Shandong Province

Taishan Scholar Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3